Functoriality of Isovariant Homotopy Classification

نویسندگان

  • Sylvain Cappell
  • Shmuel Weinberger
  • Min Yan
چکیده

It is a deep fact that the homotopy classification of topological manifolds is convariantly functorial. In other words, a map M → N of topological manifolds naturally induces a map S(M) → S(N) of their structure sets. We extend the fact to the isovariant structure set SG(M, rel Ms) of G-equivariant topological manifolds isovariantly homotopy equivalent to M and restricts to homormorphism on the singular part Ms, consisting of those points fixed by some non-trivial elements of G. We further explain that the structure set SG(M, rel Ms) is the fibre of the assembly map for the generalized homology theory with the L-spectrum as the coefficient. This relates our result to the Farrell-Jones Conjecture for L-theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isovariant extensors and the characterization of equivariant homotopy equivalences

We extend the well-known theorem of James–Segal to the case of an arbitrary family F of conjugacy classes of closed subgroups of a compact Lie group G: a G-map f : X → Y of metric Equiv F -ANE-spaces is a G-homotopy equivalence if and only if it is a weak G-F-homotopy equivalence. The proof is based on the theory of isovariant extensors, which is developed in this paper and enables us to endow ...

متن کامل

Isovariant mappings of degree 1 and the Gap Hypothesis

Unpublished results of S Straus and W Browder state that two notions of homotopy equivalence for manifolds with smooth group actions—isovariant and equivariant— often coincide under a condition called the Gap Hypothesis; the proofs use deep results in geometric topology. This paper analyzes the difference between the two types of maps from a homotopy theoretic viewpoint more generally for degre...

متن کامل

The Covering Homotopy Extension Problem for Compact Transformation Groups

It is shown that the orbit space of universal (in the sense of Palais) G-spaces classifies G-spaces. Theorems on the extension of covering homotopy for G-spaces and on a homotopy representation of the isovariant category ISOV are proved . DOI: 10.1134/S0001434612110016

متن کامل

A-homotopy theory of schemes

2 Homotopy category of a site with interval 2 2.1 Homotopy theory of simplicial sheaves . . . . . . . . . . . . . . 4 2.1.1 Simplicial sheaves . . . . . . . . . . . . . . . . . . . . . 4 2.1.2 The simplicial model category structure . . . . . . . . 5 2.1.3 Local fibrations and resolution lemmas . . . . . . . . . 8 2.1.4 Homotopy limits and colimits. . . . . . . . . . . . . . . 12 2.1.5 Eilenber...

متن کامل

5 Chow ’ S Moving Lemma and the Homotopy Coniveau Tower

We show how the classical moving lemma of Chow extends to give functoriality for the specta arising in the homotopy coniveau tower.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009